Das Thema wurde 2014 abgeschlossen
Artikel:
Höschle, B., Jendrossek, D. 2005.
Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: Evidence for different metabolic routes for oxidation of geraniol and citronellol.
Microbiology 151:2277-2283.
Höschle, B., Gnau, V., Jendrossek, D. 2005.
Methylcrotonyl-CoA carboxylase and geranyl-CoA carboxylase are involved in leucine/isovalerate utilisation (Liu) and in acyclic terpenes utilisation (Atu) and are encoded by liuA/liuC and atuC/atuF in Pseudomonas aeruginosa.
Microbiology: 151:3649-3656.
Förster-Fromme K., Höschle B., Mack C., Bott M., Armbruster W., Jendrossek D. 2006.
Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/isovalerate in Pseudomonas aeruginosa.
Appl Environ Microbiol. 72:4819-28.
Förster-Fromme K, Jendrossek D. 2006.
Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis.
FEMS Microbiol Lett. 264(2):220-5.
Förster-Fromme, K., Chattopadhyay, A., and Jendrossek, D. 2008.
Biochemicalcharacterization of AtuD from Pseudomonas aeruginosa, the first member of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA. Microbiology 154: 789-796.
Förster-Fromme, K., and Jendrossek, D. 2008.
Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes for a functional catabolic pathway of methyl-branched compounds.
FEMS Microbiol Lett. 286:78-84
Fromme, K.F.-F., Jendrossek, D. 2010.
AtuR is a repressorofacyclic terpene utilization (Atu) gene cluster expression and specifically binds to two 13 bp inverted repeat sequences of the atuA-atuR intergenic region. FEMS Microbiol. Lett. 308: 166-174
Chattopadhyay, A., Förster-Fromme, K., Jendrossek, D. 2010.
PQQ-dependent alcohol dehydrogenase (QEDH) of Pseudomonas aeruginosa is involved in catabolism of acyclic terpenes.
J. Bas. Microbiol. 50: 1-6
Fromme, K.F.-F., Jendrossek, D. 2010.
Catabolism of citronellol and related acyclic terpenoids in pseudomonads.
Minireview. Appl. Microbiol. Biotechnol. 87: 859–869
Siedenburg, G., and D. Jendrossek. 2011.
Squalene-hopene cyclases.
Appl Environ Microbiol 77:3905–3915.
Siedenburg, G., Jendrossek, D., Breuer, M., Juhl, B., Pleiss, J., Seitz, M., et al. (2012). Activation-independent cyclization of monoterpenoids. Applied and Environmental Microbiology, 78(4), 1055–1062. http://doi.org/10.1128/AEM.07059-11
Seitz, M., Klebensberger, J., Siebenhaller, S., Breuer, M., Siedenburg, G., Jendrossek, D., & Hauer, B. (2012). Substrate specificity of a novel squalene-hopene cyclase from Zymomonas mobilis. Journal of Molecular Catalysis B: Enzymatic, 84, 72–77. http://doi.org/10.1016/j.molcatb.2012.02.007
Siedenburg, G., Breuer, M., & Jendrossek, D. (2013). Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange. Applied Microbiology and Biotechnology, 97(4), 1571–1580. http://doi.org/10.1007/s00253-012-4008-1
Poudel, N., Pfannstiel, J., Simon, O., Walter, N., Papageorgiou, A. C., & Jendrossek, D. (2015). The Pseudomonas aeruginosa Isohexenyl Glutaconyl Coenzyme A Hydratase (AtuE) Is Upregulated in Citronellate-Grown Cells and Belongs to the Crotonase Family. Applied and Environmental Microbiology, 81(19), 6558–6566. http://doi.org/10.1128/AEM.01686-15
Artikel:
Jendrossek, D., Tomasi, G., Kroppenstedt, R. M. 1997.
Bacterial degradation of natural rubber: A privilege of Actinomycetes?
FEMS Microbiol. Lett. 150:179-188.
Bode, H. B., Zeeck, A., Plückhahn, K., Jendrossek, D. 2000.
Physiological and chemical investigations on microbial degradation of synthetic poly(cis-1,4-isoprene).
Appl. Environm. Microbiol. 66:3680-3685.
Bode, H., Kerkhoff, K., Jendrossek, D. 2001.
Bacterial degradation of natural and synthetic rubber.
Biomacromolecules 2:295-303
Jendrossek, D., Reinhardt, S. 2003.
Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natual rubber latex.
FEMS Microbiol. Lett., 224:61-65.
Braaz, R., Fischer, P., Jendrossek, D. 2004.
A novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly-cis-1,4-isoprene).
Appl. Environ. Microbiol. 70:7388-7395.
Braaz, R., Armbruster, W., Jendrossek, D. 2005.
Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of polyisoprene by dioxygenase mechanism.
Appl. Environ. Microbiol. 71:2473-2478.
Hoffmann, M., Braaz, R., Jendrossek, D., and Einsle, O. 2008.
Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y.
Acta Crystallogr Sect F Struct Biol Cryst Commun 64: 123-125.
Hambsch, N., Schmitt, G., Jendrossek, D. 2010.
Development of a homologous expression system for rubber oxygenase RoxA from Xanthomonas sp.
J. Appl. Microbiol. 109: 1067–1075
Schmitt,G., Seiffert. G-. Kroneck, P.M.H., Braaz, R., Jendrossek, D. 2010.
Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase.
Microbiology, 156: 2537–2548
Birke J, Hambsch N, Schmitt G, Altenbuchner J, Jendrossek D. 2012. Phe317 is essential for rubber oxygenase RoxA activity. Appl Environ Microbiol 78:7876–7883.
Seidel J, Schmitt G, Hoffmann M, Jendrossek D, Einsle O. (2013). Structure of the processive rubber oxygenase RoxA from Xanthomonas sp. Proc. Natl. Acad. Sci. U.S.A. www.pnas.org/cgi/doi/10.1073/pnas.1305560110
Birke J, Röther W, Schmitt G, Jendrossek D. (2013). Functional identification of rubber oxygenase (RoxA) in soil and marine myxobacteria. Appl Environ Microbiol. E-pub. 09.08.2013 10.1128/AEM.02194-13
Birke J, Jendrossek D (2014) Rubber oxygenase and latex clearing protein cleave rubber to different products and use different cleavage mechanisms. Appl Environ Microbiol 80:5012–5020. doi: 10.1128/AEM.01271-14
Birke J, Röther W, Jendrossek D (2015) Latex Clearing Protein (Lcp) of Streptomyces sp. Strain K30 Is a b-Type Cytochrome and Differs from Rubber Oxygenase A (RoxA) in Its Biophysical Properties. Appl Environ Microbiol 81:3793–3799. doi: 10.1128/AEM.00275-15
Watcharakul S, Röther W, Birke J, Umsakul K, Hodgson B, Jendrossek D (2016) Biochemical and spectroscopic characterization of purified Latex Clearing Protein (Lcp) from newly isolated rubber degrading Rhodococcus rhodochrous strain RPK1 reveals novel properties of Lcp. BMC Microbiol 16:92. doi: 10.1186/s12866-016-0703-x
Röther W, Austen S, Birke J, Jendrossek D (2016) Molecular Insights in the Cleavage of Rubber by the Latex-Clearing-Protein (Lcp) of Streptomyces sp. strain K30. Appl Environ Microbiol 82:6593–6602. doi: 10.1128/AEM.02176-16
Röther W, Birke J, Jendrossek D (2017b) Assays for the Detection of Rubber Oxygenase Activities. Bio-protocol 7:1–14. doi: 10.21769/BioProtoc.2188
Röther W, Birke J, Grond S, Beltran JM, Jendrossek D (2017a) Production of functionalized oligo-isoprenoids by enzymatic cleavage of rubber. Microb Biotechnol 43:1238. doi: 10.1111/1751-7915.12748
Birke J, Röther W, Jendrossek D (2017) RoxB Is a Novel Type of Rubber Oxygenase That Combines Properties of Rubber Oxygenase RoxA and Latex Clearing Protein (Lcp). Appl Environ Microbiol 83:e00721–17. doi: 10.1128/AEM.00721-17
Birke J, Röther W, Jendrossek D (2018) Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation. Appl Microbiol Biotechnol 241:184–13. doi: 10.1007/s00253-018-9341-6
Jendrossek D, Birke J (2018) Rubber oxygenases. Appl Microbiol Biotechnol 78:4543–18. doi: 10.1007/s00253-018-9453-z
Schmitt G, Birke J, Jendrossek D (2019) Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase RoxA. AMB Express 9:166–18. doi: 10.1186/s13568-019-0888-0
Birke J, Jendrossek D (2019) Solimonas fluminis has an active latex-clearing protein. Appl Microbiol Biotechnol 103:8229–8239. doi: 10.1007/s00253-019-10085-w
Extracellular degradation of PHA
Artikel (Auswahl):
Jendrossek, D., Knoke, I., Habibian, R.B., Steinbüchel, A., Schlegel, H. G. 1993.
Degradation of poly(3-hydroxybutyrate), PHB, by bacteria and purification of a novel PHB depolymerase from Comamonas sp.
J. Environ. Polym. Degrad. 1:53-63.
Schirmer, A., Jendrossek, D., Schlegel, H. G. 1993.
Degradation of poly(3-hydroxyoctanoic acid) [P(3HO)] by bacteria: purification and properties of a P(3HO) depolymerase from Pseudomonas fluorescens GK13.
Appl. Environ. Microbiol. 59:1220-1227.
Schirmer, A., Jendrossek, D. 1994.
Molecular characterization of the extracellular poly(3-hydroxyoctanoic acid) [P(3HO)] depolymerase gene of Pseudomonas fluorescens GK13 and of its gene product.
J. Bacteriol. 176:7065-7073
Jendrossek, D., Frisse, A., Behrendes, A., Andermann, M., Kratzin, H. D., Stanislawski T., Schlegel, H. G. 1995.
Biochemical and molecular characterization of the Pseudomonas lemoignei polyhydroxyalkanoate (PHA) depolymerase system.
J. Bacteriol. 177:596-607
Behrends, A., Klingbeil, B., Jendrossek, D. 1996.
Poly(3-hydroxybutyrate) depolymerases bind to their substrate by a C-terminal located substrate binding site.
FEMS Microbiol. Lett. 143:191-194.
Molitoris, K. P., Moss, S. T., de Koning, G. Jendrossek, D. 1996.
SEM analysis of poly-hydroxyalkanoate degradation by bacteria.
Appl. Microbiol. Biotechnol. 46:570-579.
Jendrossek, D. Schirmer, A., Schlegel, H. G. 1996.
Biodegradation of polyhydroxyalkanoic acids, Review,
Appl. Microbiol. Biotechnol. 46:451-463.
Jendrossek, D., Schirmer, A., Handrick, R. 1997.
Recent advances in characterization of bacterial PHA depolymerases.
In : Eggink, G., Steinbüchel, A., Poirier, Y., Witholt, B. (Eds.). 1996 International Symposium on bacterial polyhydroxyalkanoates. NRC Research Press, Ottawa, Canada.
Spyros, A, Kimmrich, Briese, B.H., Jendrossek, D. 1997.
1H-NMR imaging study of enzymatic degradation in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Evidence for preferential degradation of the amorphous phase by the depolymerase B from Pseudomonas lemoignei.
Macromolecules 30:8218-8225.
Terpe, K., Kerkhoff, K., Pluta, E. Jendrossek, D 1999.
Relationship between succinate transport and production of extracellular poly(3-hydroxybutyrate) depolymerase in Pseudomonas lemoignei.
Appl. Environm. Microbiol. 65:1703-1709.
Focarete, M.L., Scandola, M., Jendrossek, D., Adamus, G. Sikorska, W. Kowalczuk, M. 1999.
Bioassimilation of oligomers of atactic poly[(R,S)-3-hydroxybutyrate] by selected bacterial strains.
Macromolecules 32:4814-4818.
Jendrossek, D. 2001.
Transfer of [Pseudomanas] lemoignei, a Gram-negative rod with restricted catabolic capacity, to Paucimonas gen. nov. with one species, Paucimonas lemoignei comb. nov.
Int. J. Syst. Evol. Microbiol. 51:905-908
Handrick, R., Reinhardt, S., Focarete, M.L., Scandola, M., Adamus, G., Kowalczuk, M., Jendrossek, D. 2001.
A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short-chain-length hydroxyalkanoic acids.
J. Biol. Chem., 276:36215-36224.
Reinhardt, S., Handrick, R., Jendrossek, D. 2002.
The „PHB depolymerase inhibitor“ of Paucimonas lemoignei is a PHB depolymerase.
Biomacromolecules 3:823-827.
Jendrossek, D., R. Handrick. 2002.
Microbial degradation of polyhydroxyalkanoates.
Annu. Rev. Microbiol. 56:403-432
Elbanna, K., Lütke-Eversloh, T., Jendrossek, D., Steinbüchel, A. 2004.
Studies on the biodegradability of polythioesters by polyhydroxyalkanoate (PHA) degrading bacteria and PHA depolymerases.
Arch. Microbiol. 182:212-225
Kapetaniou EG, Braaz R, Jendrossek D., Papageorgiou AC. 2005.
Crystallization and preliminary X-ray analysis of a novel thermoalkalophilic poly(3-hydroxybutyrate) depolymerase (PhaZ7) from Paucimonas lemoignei.
Acta Crystallograph Sect F Struct Biol Cryst Commun. 61:479-81.
Gebauer, B., Jendrossek, D. 2006.
Assay of PHB Depolymerase activity and product determination.
Appl. Environ. Microbiol. 72:6094-6100
Jendrossek. D. 2007.
Peculiarities of PHB granules preparation and PHA depolymerase activity determination.
Appl. Microbiol. Biotechnol. 74:1186-1196
Papageorgiou, A.C., Hermawan, S., Singh, C.B., and Jendrossek, D. 2008.
Structural basis of poly(3-hydroxybutyrate) hydrolysis by PhaZ7 depolymerase from Paucimonas lemoignei.
J Mol Biol 382: 1184-1194.
Hermawan S., Jendrossek D. 2010.
Tyrosine 105 of Paucimonas lemoignei PHB depolymerase PhaZ7 is essential for polymer binding.
Polymer Degradation and Stability 95: 1429-1435
Wakadkar, S., Hermawan, S., Jendrossek, D., Papageorgiou, A.C. 2010.
The structure of PhaZ7 at atomic (1.2 °A) resolution reveals details of the active site and suggests a substrate-binding mode. Acta Cryst. F66, 648–654
Jendrossek D, Hermawan S, Subedi B, Papageorgiou AC (2013) Biochemical analysis and structure determination of Paucimonas lemoignei poly(3-hydroxybutyrate) (PHB) depolymerase PhaZ7 muteins reveal the PHB binding site and details of substrate-enzyme interactions. Mol Microbiol 90:649–664. doi: 10.1111/mmi.12391
Intracellular degradation of PHA
Artikel:
Handrick, R., Reinhard, S. Jendrossek, D. 2000.
Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha.
J. Bacteriol., 182:5916-5918
Jendrossek, D., R. Handrick. 2002.
Microbial degradation of polyhydroxyalkanoates.
Annu. Rev. Microbiol. 56:403-432
Handrick, R., Technow, U., Reichart, T., Reinhardt, S., Sander, T., Jendrossek, D. 2004.
The activator of the Rhodospirillum rubrum PHB depolymerase is a polypeptide that is extremely resistant to high temperature (121°C) and other physical or chemical stresses.
FEMS Microbiol. Lett., 230:265-74
Handrick, R., Reinhardt, S., Schultheiss, D., Reichart, T., D. Schüler, V. Jendrossek, D., Jendrossek, D. 2004.
Unraveling of the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB granule bound protein (phasin).
J. Bacteriol. 186:2466-75
Handrick, R., Reinhardt, S., Kimmig, P., Jendrossek, D. 2004.
The “intracellular” PHB depolymerase of Rhodospirillum rubrum is an periplasm-located enzyme with similarity to extracellular PHB depolymerases.
J. Bacteriol. 186:7243-7253
Gebauer, B., Jendrossek, D. 2006.
Assay of PHB Depolymerase activity and product determination.
Appl. Environ. Microbiol. 72:6094-6100
Jendrossek D., Selchow O., Hoppert M. 2007.
PHB granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum.
Appl Environ Microbiol. 73:586-593.
Hermawan, S. Jendrossek, D. 2007.
Microscopical investigation of PHB granules formation in Azotobacter vinelandii.
FEMS Microbiol. Lett. 266:60-64
Jendrossek. D. 2007.
Peculiarities of PHB granules preparation and PHA depolymerase activity determination.
Appl. Microbiol. Biotechnol. 74:1186-1196
Wang, L., Armbruster, W., Jendrossek, D. 2007.
Production of medium-chain length hydroxyalkanoic acids by pH stat.
Appl. Microbiol. Biotechnol. 74:1047-1053.
Uchino, K., Saito, B., Gebauer, B., Jendrossek, D. 2007.
Isolated Poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl-CoA and degradation of PHB to acetyl-CoA.
J. Bacteriol. 189:8250-8256.
Uchino, K., Saito, T., Jendrossek, D. 2008
Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16,
Appl Environ Microbiol. 74: 1058-1063.
Sznajder, A., Jendrossek, D. 2011.
Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules
Appl Microbiol Biotechnol 89:1487–1495
Cao C, Yudin Y, Bikard Y, Chen W, Liu T, Li H, Jendrossek D, Cohen A, Pavlov E, Rohacs T, Zakharian E (2013) Polyester modification of the mammalian TRPM8 channel protein: implications for structure and function. Cell Rep 4:302–315. doi: 10.1016/j.celrep.2013.06.022
Sznajder A, Jendrossek D (2014) To be or not to be a poly(3-hydroxybutyrate) (PHB) depolymerase: PhaZd1 (PhaZ6) and PhaZd2 (PhaZ7) of Ralstonia eutropha, highly active PHB depolymerases with no detectable role in mobilization of accumulated PHB. Appl Environ Microbiol 80:4936–4946. doi: 10.1128/AEM.01056-14
Tumlirsch T, Sznajder A, Jendrossek D (2015) Formation of polyphosphate by polyphosphate kinases and its relationship to poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16. Appl Environ Microbiol 81:8277–8293. doi: 10.1128/AEM.02279-15
Quelas JI, Mesa S, Mongiardini EJ, Jendrossek D, Lodeiro AR (2016) Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens. Appl Environ Microbiol 82:4299–4308. doi: 10.1128/AEM.00757-16
Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, Sobotka R, Jendrossek D, Hess WR, Forchhammer K (2016) Awakening of a Dormant Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined Program. Current Biology 26:2862–2872. doi: 10.1016/j.cub.2016.08.054
Nowroth V, Marquart L, Jendrossek D (2016) Low temperature-induced viable but not culturable state of Ralstonia eutropha and its relationship to accumulated polyhydroxybutyrate. FEMS Microbiol Lett 363:fnw249. doi: 10.1093/femsle/fnw249
Kellici TF, Mavromoustakos T, Jendrossek D, Papageorgiou AC (2017) Crystal structure analysis, covalent docking and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase. Proteins 276:36215. doi: 10.1002/prot.25296
Juengert J, Bresan S, Jendrossek D (2018) Determination of Polyhydroxybutyrate (PHB) Content in Ralstonia eutropha Using Gas Chromatography and Nile Red Staining. Bio-protocol. doi: 10.21769/BioProtoc.2748
Jüngert JR, Borisova M, Mayer C, Wolz C, Brigham CJ, Sinskey AJ, Jendrossek D (2017) Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-hydroxybutyrate) (PHB) in Ralstonia eutropha H16. Appl Environ Microbiol AEM.00755–17. doi: 10.1128/AEM.00755-17
Adaya L, Millán M, Peña C, Jendrossek D, Espín G, Tinoco-Valencia R, Guzmán J, Pfeiffer D, Segura D (2018) Inactivation of an intracellular poly-3-hydroxybutyrate depolymerase of Azotobacter vinelandii allows to obtain a polymer of uniform high molecular mass. Appl Microbiol Biotechnol 187:6982–15. doi: 10.1007/s00253-018-8806-y
Jüngert JR, Patterson C, Jendrossek D (2018) Ralstonia eutropha's Poly(3-hydroxybutyrate)(PHB) polymerase PhaC1 and PHB depolymerase PhaZa1 are phosphorylated in vivo. Appl Environ Microbiol AEM.00604–18. doi: 10.1128/AEM.00604-18
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM (2020) The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 102:2693. doi: 10.1093/femsre/fuaa058